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ABSTRACT

Orthogonal collocation using piecewise cubic Hermite functions is used to
solve the elliptic partial differential equations arising from pseudo-
continuum models of heat transfer in a packed bed. Problems arising from a
discontinuity in the wall boundary condition and from the semi-infinite domain
of the differential operator are discussed. Comparison is made between the

computed solution and experimental results.
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SIGNIFICANCF AND EXPLANATION

Models used by engineers are often simplified in the interests of
mathematical convenience, rather than in accord with physical reality. A
typical case is the omission of axial conduction from models of heat transfer
in packed beds, thus allowing an initial=-value problem to be solved in the
axial direction, instead of a boundary-value problem.

This work demonstrates the application of orthogonal collocation, a
numerical method for the solution of differential equations, to packed bed
models which include axial conduction. The method is accurate and relatively
fast, due to the local nature of the approximating functions used; these make
it a good candidate for the solution of "difficult" problems, in which steep
gradients are involved.

A formal notation for the method is given, which casts the method in a
framework similar to that of the polynomial orthogonal collocation method
already familiar in the chemical engineering literature (12, 21). Some
tentative suggestions for the implementation of the method are given, in the

form of subroutines supplied in an appendix to the main text.
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SOLUTION OF PACKED-BED HEAT-TXCHANGER MODELS
BY ORTHOGONAL COLLOCATION USING
PIECEWISE CUBIC HEPMITE FUNCTIONS
Anthony G. Dixon
Introduction

The choice of a model to describe heat transfer in packed heds is one which has often
been dictated by the requirement that the resulting model equations should be relatively
easy to solve for the bed temperature profile. This consideration has led to the
widespread use of the pseudo-homogeneous two-dimensional model, in which the tubular bed is
modelled as though it consisted of one phase only. This phase is assumed to move in plua-
flow, with superimpnsed axial and radial effective thermal conductivities, which are
usually taken to be independent of the axial and radial spatial coordinates. In non-
adiabatic beds, heat transfer from the wall is governed by an apparent wall heat transfer
coefficient.

The earliest heat-transfer studies neglected the effective axial conduction term as
this was expected to be negligible by comparison with the bulk=-flow term in the long heds
typically used in industry. Axial dispersion was also neglected in mixing studies, and
experiments by Hiby (1) confirmed the absence of axial back-mixing. Some studies have
cquestioned this omission (2,3)., More recently it has been shown (4,5) that measurements of
temperature profiles in non-reacting systems in laboratory packed hed heat exchangers can
yield statistically meaningful heat transfer parameter estimates only if the measurements
are made at relatively short bed depths, where significant axial and radial temperature
gradients are present. The omission of axial conduction at such bed depths leads tn
systematic errors in the predicted temperature profiles, which cause the model to be
statistically rejected when it is fitted to data taken at several bed depths. 1If the r: iul
is fitted depth-by-depth, the parameter estimates are found to have a depth-dependencs,

noticed by De Wasch and Froment (6). In this case, they must be regarded as length-

Sponsored by the United States Army under Contract No. DAAG20-80-"=0041 and
the National Science Foundation under Grant No. ENG76-24361%,
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averaged values rather than point values. Li and Finlayson (7) argue that constant
asymptotic values should be used, as obtained from data taken at long bed depths; this
would give badly-determined estimates as noted above.

When a chemical reaction is present, implying laraer temperature gradients, Young and
Finlayson (8) have shown that an effective axial dispersion term should be included, and
Mears (9) has given criteria for the neglect of axial dispersion which show that increasing
fluid velocity reduces axial effects. This is to be expected, since conduction through the
solid, a static effect, is believed to be the major contributor to axial effects.

The disadvantage of including axial di~persion is that an exit boundary condition must
be specified, and in cases where an analytical solution is not available, a numerical
boundary~-value problem must be solved in the axial direction, rather than an initial-value
problem. This point has bheen discussed recently by Jackson and co-workers (10}, who
present a cross-flow model of dispersion which allows downstream propagation but not
upstream. However it would not be possible to use a one-phase model of this form for heat
transfer, as axial back=-conduction cannot bhe represented.

For steady-state heat transfer an elliptic partial differential eauation is the result
of using the one-phase model, Previous studies (2,11) have used the orthogonal collocation
method due to Villadsen and Stewart (12) to determine the coefficients of trial-function
expansions in both spatial co-ordinates. This method works well when the temperature
gradients are moderate and few collocation points are required. For steep profiles,
however, such as may be encountered at a "hot-spot”" in the reactor, many collocatieon pnints
may be required, espercially as the generation of these points as roots of polynomials Aoes
not allow them to be placed in the reaion of interest. Such a collocation scheme is a
alobal one, resultinag in a collocation matrix which is large and not usefully sparse, so
that the solution of the resulting algebraic eauations may become costly., Furthermore, the

polynomial cnllncation method has heen known to oscillate ahout the true solution as the

dagree of approxiratinn is increasnd (13),
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The answer to these difficulties lies in the use of piecewise approximants, such as

cubic splines, which are in general use in the mathematics literature (14). Carey and
Finlayson (15) have introduced a finite~element collocation method along these lines, which
uses polynomial approximants on sub-intervals of the domain, and apply continuity
conditions at the hreak-points to smooth the solution. It would seem more straight-
forward, however, to use piecewise polynomials which do not require explicit continuity
emuations; in this paper the use of piecewise cubic Hermite functions is considered, as
described by Prenter and Russell (16).

The advantages of piecewise polynomials are firstly that the subintervals may be
clustered in regions of interest, so that an improved approximation may be obtained where
gradients are steep, and secondly that the collocation matrix is banded, allowing advantage
to he taken of this special structure, both in work required for decomposition and in
computer storage used. This second advantage was clearly demonstrated in a preliminary
study on the one-phase model (17), where the cubic Hermite function method was shown to
give an order-of-magnitude improvement in exit temperature profile over the polynomial
collocation method even when the subintervals were chosen to be of equal length. A more
extensive investi7vation using the one-phase model as a test case ig described in the
present work.

The use of two-phase homogeneous continuum models in packed bed modelling has often
hean avoided due to the computational difficulties. Recently, Paspek and Varma (18) have
¢ound a two-phase model to be necessary to describe an adiabatic fix..d~bed reactor, while
Nixon and Cresswell (17) have shown that the effective parameters of the one-phase model
may he interpreted in terms of the more fundamental parameters of a two-phase model, thus
demnnstrating more ~learly their aualitative dependencies on the operating and design
characteristics of the bed, "“hen twn phases and several species are involved, the

samnutational advanrazes »f the cubic Hermite method may be anticipated to be high.




arising from a “wo-

In this paper the coupled elliptic partial differential emiations

rhase homogeneous continuum model of heat transfer in a packed hed are solved, ard some

attempt is made to discriminate between rival correlations fnr those parameters not vye+

nrevious study

N

well-established, by means of a comparison with experimental results from a

(4,5).
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Collocation using piecewise cubic Hermite functions

a) Boundary-value problems

The interval [a,b] 1is partitioned into n subintervals by

a= 51 < 52 Cavn¥ 5n < £n+1 = b, Then the piecewise cubic Hermite functions are defined
for 1 € i < n+t! by
20-¢, 7 3(e-r,_ )
3 * 2 (Bjog €8 &)
hY h,
i=1 i=1
2
26 30g-¢))
9. (8) = 1+ - (., € § €& )
1 n3 n? i i
1 1
0 otherwise
(-2, _ )2 (E=g,) (6, , SESE)
i-1 i i=-1 & 2i
2
i=1
2
(E=E.)(E. ,-§)
: = A SN S5 B
Vi(E) = h2 (Ei < £« £i+1)
i
0 otherwise .

The length of subinterval [Ei,€i+1] is denoted by h;. The functions @1, vy are

restricted to the interval [51,52] and °n+1’ Vn+1 are restricted to the interval

The piecewise cubic Hermite interpolation polynomial ¢» a function u($) is

n+1
A
ulE) = s {£) = wlg ) (5 +u' (5 v (5) .
n =1 k' k k Tk
Hence sn(E) interpolates u and its first derivative u' at the roints ~F the

partition.
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anpendix,

Exanple:

The €

arohle~:

ankrown oonstants in 3 (£)  are Jdetermined by collocation at the 2n  Gaussian
n
s nf the Rwo hoandarv conditions. Computational Jdetails are given in the

and an illustrative example is shown below.

eomparison »° some anllocation methods for a boundary-value problem.

Allowing problan (= 2 aood test case (27), giving a "boundary-layer" type nof

g ix) + Tyxut{x) + 2yu{~) =0 (1)

— oy
e e s S SR 4 TR, At b e © o - £ bt CAL T WO A M e D
The Ziussian polnts of suhinterval (£ ,4L ) are £ . =&, + (VY3 - 1)h, /2/3,
) 17 Ti+ i1 1 i
Eo_= 5 = (V3 - T /230 Now dafine
i3 i+ 1
. - Y u'(f I ‘(£
& fats ). u ("i)' u(vi”), g N
and, for . <& 5 € 7. ,
1 i-1
Yy = (1 (8), £), Y, ¥, £
a s N £) vi( ) ¢i+1(c,) Yiag B
[s]
gl(i) = ER (a.(£))
2
- s}
_gi(g) =— (gi(i)) .
ag
Turther, let a (§ )} = a, ant similarly for b,. and <c,..
=i 7ij3 =i <ij =ij3
Then
utf . ) ~s (£ ) = (a,. * u.)
n "ij -ij -1




A

=Y (1a,1b)

u{0) =1 , u(1)

2
oYX , which falls steeply from u =1 at x =0 at a rate

J The solution is u(x)
determined by the parametar Y.

The following methods are considered:

i) polynomial collocation, implemented using the routines given in (21).
ii) finite element collocation, implemented as described in (15).
iii) cubic Hermite collocation, as described above.
In case (i), collocation was performed at the zeros of PN(1’1)(X), giving a system of
N  algebraic equations. For methods (ii) and (iii) the interval [0,1] is divided into
n sahintervals by the set of breakpoints {xi}. In the case of finite~element collocation
it was found to be more effective to collocate at only two pnints per subinterval, and to
increase the number of subintervals, rather than to increase the number of interior
collozation points in each subinterval. Continuity equations must also be included for
case (ii) at the breakpoints; this results in a system of size 3n + 1, with a bandwidth
of 7.

The equations for method (iii) in the above notation are

{c.. + 2yx_ b, .+ 2ya,.)e u, =10
=ij i3=13 -ij =i

1,2.04n

-
[
o
<
¥
=
!

ulx,) =1 ; u(xn+1) = e .

These give a system of order 2n + 2, with a bandwidth of 5. The same breakpoints

were used for methnds (ii) and (iii).

The difference between approximate and exact solutions was examined at the points
%~ 0,71(0,21)9,10(7.106)0.90; the maxi~um ahsnlute errar is denoted by neHm.

Some rasults are shown in tables 1 and 2. The times shown are relative and have no
ak3alate meaning. Boath methnds (i1i) and (iii) are seen to be faster for the same accuracy

ian mathnd (1), especially for the =cas3e vy = 1500 which involves an extremely steep

.
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gradient.

heinag faster due to the fewer number of

Methods (ii) and (iii)

gave *he same re, [ "c,

fauatilons “eele .

as expested, with method (141

The performance of marhodg (91

and (iii) depended on the breakpoints use?, a neorn-~urifnrm mes> heina rhe Tegt ~hnice,

These were chosen heuristically, however it should be nnted tha+t simply agaregatinc roirts

neav x 0 did not always give the best results.
’{ ‘7
Method (i) : Breakpoint | 1 Time
N el Time set l el | Method (ii) [ Method (1ii)
o -3 ) ~
1
I | !
j | :
10 0.32 1.7 | 0(0.05)1.0 | 0.3040-2 | 1.9 ? 1.4
f !
20 0.52,0-3 4.7 | 0(0.01)1.0 0.32y5-5 ! 6.0 Z 4.1
30 0.39,4-5 10.3 { ‘ ¥
i) | ! !
a0 0.21,,-8 19.4 | | 0(0.005)0.1 0.44,,6 | 3.4 2.8
| T |
[
L 10.01)0.3(D.1) [ |
|
Table 1 Yy = 150
- s g — ‘
Method (i) Breakpoint Time )
N el Time set et wethod (ii) | Method (1i31)
e ———— e o . ma e - — —— e ma—— - —— - - [—
'
10 0.22 1.7 0(0.001)0,05 0.49y0-4 4.3 3.0
! 20 0.12 4.7 (0.01)0.1(0.1) ‘ J
y 30 0.13 10.3( | 1.0 | |
‘ a0 0.22,-1 19.5 ‘
*,1 50 .59, -3 32.4 0(0.001)0.1 0,05, -7 7.0 4.2
{0,05)11.0 ) ;
L 4 - i . e !
i Table 2 Y = 1500
b
]
[ -l
L
3
|
!
] A
- 4
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b) Elliptic partial differential equations

The use o piecewise bicubic Hermite functions in collocation schemes for the soluticn
of elliptic partial differential equations has been described by Prenter (16,20); a short
outline is presented here.

Partition the domain f{a,b] x [(c,d8] by

a = yg < Vg Censl ¥y < yyq = b

I
o

and € = Xq € Xy €ewel Xy < Xppq T

then the piecewise bicubic Hermite interpolation polynomial to a function &(y,x) is

8(y,x) ~s m(y,x)

n,
nt1 mt1 38
= 3 T {e 5 N -
Lol { (yi,xj)oi(y)vj(x) + ™ (yi,xj)wi(y),j(x)
i=1 =1
LA XN WY (X)) 4 cH (v ,x )y (Vv (x)} .
ax - 3777775 dydx 177371 3 Y

Thig involves 4(n+1)(m+1) unknown constants. The Gaussian points for the x and vy
directions are defined as before: combinina the two points for each of [vi,yi+1? and

I

],xﬁ+1] gives four Caussian voints for the subrectangle [Vi’vi+1? x [xj’yﬁ*1"

-

Collocation at these points for each subrectanale yields a total of 4nm equations., It

should be noted that at anv collocation point (y )} only sixteen bicubic nroduct

UL

functions are non-zero, hence each collocation egquation involves only sixteer unknowne.

EE] a6 3¢

low le o = {5({v ,> _— 3 —_— v B . ) "
Now let £y { (yi,wj), 3y (yi,xj), P (‘_»i,x:J s (\1’Xj ) an

? = (% 5 3 , S

—ij 2330 Zi+1,30 L4, 3417 Zis1, 940

Let a. . (v,x) = (5 (v)o (x),v ()& (x), 3 (viy () ,p (v). (x}) and
=iqF i hl i 1 i 3 1 N
-

e £ A ST S
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:ij(},x) == 2(&47(;,x\)

32
VX = (R, (vux))
=i4 ERERRES

In particular, Ai,(y, P A‘_b. and similarly for the others.
~il "1 13k

i L =ikl
Then G(y,»,fo) = (A,,P, « & ) and again similar exnressions hold for derivatives
i’ 94 —i7ki —i3

The above provides a concise notation for the collocation ecuations.
The rermaining 4n + 4m + 4 equations required to determine the expansion coefficients
are suprlied rv tke houndarv conditions as follows:
(i) nr the lines v = 0 and vy = 1, the houndary con”.tions given are

differentiated with respect to x. Tnaether with the oriainal equations this

virlAs tun emiations on each houndary, which mav be anplied at each of the

= - 1 {r=+nr=31 boundarv nedes to ohbhtain a total of 4m - 4 conditions. For
3?’;

awawele, yiver =0 at v = 0, ¢then 3y =N at y =0 alseo, and hence
. N w y = 0 A
[ |
. ’ Vo= 2,300
e f

J. e rrilar areccdnre may me felloved an o the lines w2 N, v = 1, to obtain
4e = A mandyeyoe s,

—1ha
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(iii) at each corner both (i) and (ii) above may be amplied, to give four
connitions. However only three of these will he independent, and one must be
eliminated, except when there is a corner discontinuity, when an arbitrary
decision must be made.

The 4n + 4m + 4 conditions derived above may be used either to eliminate unknowns
and thus reduce the size of the system of equations to be solved, as was done in the
original paper (16), or to generate extra equations. The latter procedure is easier to
apply wher mixed boundarvy conditicns are used, the resulting increase in computer time used

heina nffset hy the savina in programmina effort.

¢} Parabolic partial differential equations

The solution of parabolic partial Adifferential eruations by the cubic Hermite function
method and by several other methods has been reviewed by Hopkins and Wait (23). They also

provide extensive program listings for the solution of the set of ODEs which results.

_11-

PR ey




~

One-phase continuum model

The packed bed heat exchanger considered here is that used in recent experimental

studies (3,5) and shown schematically in figure 1. The long unheated calming section, (a),
and the heated test section, (b), are each considered to be semi-infinite and packed with

similar solid particles. There is a step change in wall temperature at the plane 2z = 0.

The model equations are well-known, and are, in dimensionless form,

g%(-;%;i§+g‘]:(:_"-§+;‘%§) (21
%g =0 at y =20 (3)
8§ +0 as x *+ - (4)
8+1 as x + ® (51
85+ (8i)e = (BUH(X) at y =1 (61
y

Here the Heaviside step function is used to model the change in wall temperature. The
downstream axial boundary condition, equation 5, was found to be consistent with

experimental data in a previous study (5).

The equations (2) - (6) have an easily-determined analytic series solution in terms of
Bessel functions (5); this is therefore a good test case upon which to try out the

numerical method.

-12-
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There are *wo noints of interast associated with the numerical solutinn of eaquations

(2) -~ (6): (i) the x-domain is infinite and (ii) there is a step-function in the wall
bourdary condition.

(i} Transformation of the infinite domain

There are sevesral wavs of Jdealing with an infinite domain. Guertin et al (24)
chose perturtation eolutions of the model as bhasis functions. This approach may be
dA1fficult te extend ro more coaplicated ecuations than the non-linear initial-value
problems whick they considered; even so, the modeller must do a considerable amount of
analvtical work with this methnd.

Birnbaum and Lapidus (25) sugaest the use of polynomials which are orthogonal over the
infinite domain, obtaining these either by using a weighting function such as e'xz: which
gives Hermite polvnomials orthogonal over (-%,®), or by transforming the infinite domain
onto a finite domain, and usina conventional polynomials such as shifted Legendre
polynomials. The drawback to these methods is that there is no control of the placement of
the collocation points, some of which are always included in regions where the profile is
essentially flat, and are thus wasted.

The use of standard piecewise polynomials, together with an appropriate transformation
of the infinite domain, overcomes these difficulties, provided some care is taken in the *
transformation.

Verhoff and Fisher (26) used the form t =

tan (ﬁ) in their solution of the Graetz

~roblem with axial annduction. Somewhat neater enuations result from taking

t = ranhi{x/a) giving ,
2
2 2 2
- 3 1 270 - ¢
r’—t)(1+;—§-%=¥rj;+lgg)+-“2t) 39 7
o Po3y” v ooy a PeA at”
39
— =N at y =0 (8)
Jy
D=0 at ot = - (9)
-14-
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The ccllocation equations for this case are:

. t. ;
( 3v (1 + jv..t _ v Ctt

a JPEA —ijuv 2 —-ijuv

Here iiﬁ is the vector of unknowns for subrectangle ij.

The boundarv conditions are:

EE ‘
! 3; (O,CJ) =0 (3 = 2,3...m)
i
| (t,2) =0 (3= 1,2.,.m1)
|
" S, =) ==ty , = 1) =0 (1= 1,2,..041)
‘ 3y i
! Stv e 1) =10 (1= 1,2.0n%1) .

(B7 (1, £ _ ) + (Pi) A (Y, £ ) ). © . = (Pi) H(t )
- b -n3 -nj ik

Tre natural arderine nf eruatinnsg (16) agives a handwidth of 4n + 15,

“hen =onsidarin-t tre “egrer ~f accuracy to he reauired from a numerical method, it is

necessary to take intn accoun® the notential uses of the model equations being solved. It
wonl? Fe inapprorriate tn remmire high accuracv in the present study, as bed temperature
rrofiles are seldor accurately rmeasured, Consequently errors of 1°C in comparina

nurerical 12 a=alytical ves:ltc were considered reasonable.

e it PN d
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R | at t =1 (10)
38
39 ¢ (RiYI = RioH(Y) (11)
v

Tnit1allv it mav arrear girnlest *n let x = 1, and use t = tanh x. However this results
irn t*e recinm x > 3 in *he hed heina manred orto A small interval [0.995,1)]. This is
nndesirable for two reasons:

1Y If subintervales are reaquired in the bed downstream of x = 3, it becomes

Aifficult to rlase the breaknoints in the t-domain

2 if axial aradients are nresent Adownstream of x = 3, they will become very sharp
3% 35
in the t-domain, since %z = a“ Ix so %% + ® as t + 1,
2
(1=t )

b
rt

can be =een that for a fixed choice of {ti}, Aifferent choices of a will locate the
indured partition (x13 in different physical narts of the bed. Thus a must be chosen
so tha*t tre collocation points in the t-dor - in ave rlaced in a way that makes physical
sense in the x-Jdomain. The appropriate value is found hy trial and error:; an empirical
rule sugaester hy experience is to take a = Pep.

. The effect »f an inappropriate value for a is shown in figure 2. It should be noted
smat although Verhoff and Fisher used o = 1 throughout, their computations were made for
sufficiently short beds to ensure good results; larger values of a would be reauired for
temrerature profiles further downstream, which would be of interest in the presence of
reantion.

(ii) Step-chanae in wall boundary condition

It was anticipated that the Adiscontinuity in wall temperature at x = 0, and the
resultiny steep local aradients, would lead to a locally ponr approximation which might

Cave aleerse offacts farther Anwnstream, T+ was snon found that mesh refinement in the

Avial dyrarrinn jmar-ved the resnlts ennsiderably over the use of an enually-spaced mesh,
wroaraas magh rafirement in the radial Ajrection had little effect, and a fairlv coarse
Frw~ wn a4l moaet owac alwavs feund to be adeanate,

-1€




The mesh refinement was carried out by heuristically searching for good hrea¥pnint

distributions, the final choice (corresponding to m = 10) being
{:j} = {-0.1, -0.05, -0.025, 0, 0.025, 0.05, 0.1, 0.2, 0.6} .
Ary further refinement led to improved values only at extremely short bed depths.

The effect of the wall temperature discontinuity may also be mitigated by an
alternative implementation of the wall boundary condition to that described in the previous
section. The two equations at each interior boundary node (1,tj), j=2,3,...,m, are
dropped, together with one equation at each of (1,-1) and (1,1). These 2m equations
are replaced by application of the boundary conditions at two points within each
subinterval on the line y = 1., The Gaussian points are not necessarily the optimal
choice, but were used in the absence of any other guideline.

For the case of a uniform mesh, the Gaussian point implementation was an order-of-
magnitude improvement over the breakpoint implementation. When the refined mesh was used,
the two methods gave essentially the same results, except at low bed depths near the wall,
where the Gaussian point method was slightly better. Consequently it was the method used
in the rest of the work.

The reason for the above differences is not clear but appears to lie in the wall
temperature specification. No difference between the methods was found when applied to the
centre-line condition, and reduction of Bi to lessen effects of the discontinuity also
greatly reduced the advantage of the Gaussian point method. It may be that the boundary
condition is more effective when "spread out" using two points instead of being reinforced

by applying two conditions at one point.

-1G=




The comparisons were made at y = 0.1,0.2...1.0 for each of 5 bed depths: x

1.33,2.67,4.00,5.33,6.67. The parameter ranges covered were
Pe, : 0.25 - 20.0
Pep 2.5 = 120.0

Bi : 0.5 - 8.0 .

The refined mesh given above was used in the axial direction; the radial mesh used n
=3, {yi, = {0.25,0.5,0.75}. It was found possible to use the same mesh throughout in the
t-domain, due to the freedom to vary the scaling factor a. This avoided heuristic
, searchina for a new mesh for each new set of parameters. Automatic mesh generation was not
felt to be worthwhile, in view of the extra costs involved and the relatively
| underdeveloped state of the art (27),
' The 1°C criterion was met in all cases except for Pe, = 20 wusing this method. For
" that case the centre-line discrepancy rose to approximately 3°C at lower bed depths.
Presumably this error could be eliminated by taking higher order approximations. Typical

)
{
‘ computation times to produce one set of solutions (i.e., 5 bed depths) were approximately
i

1.5 sec on a UNIVAC 1110 computer, a reasonable compromise between cost and accuracy.

,.._;-'. —
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Two-phase continuum model

Two-phase continuum models, in which the solid particles and their associated stagnant
fillets of fluid are regarded as a continuous pseudo-solid phase, are to be preferred tn
the more traditional cell model of a particle bathed in fluid, which does not allow
conduction from particle to particle. In previous studies, such models have been
simplified by considering a one-dimensional model only (28). This study considers the full

equations, which are, in dimensionless form:

1 a'rf 13'1'f 1aq-f Nf a'rf
Pe- T2 YY) YPe_ Tz " TeT T )
RF 9y AF 3% RF
az'rs ) T, az'rs
( + =2y 4 + N(T,-T)=0 (13)
ay2 y 9y 3x2 s £ s
an BTS
2 2 A as
BTf
— + (Bi_ )T, = (Bi_)H(x)
dy £ £ f _
a7 at y =1 (15
3y + (Bls)Ts = (BLSJH(X)
T,,7 +0 as x * =-» (1€)
f''s
T.,T +1 as x + > (17
f''s

A semi-analytical solution to these equations was derived bv Dixon and Cresswell (12}, wh~
then matched the fluid phase temperature profile to the one-phase model profile to ohtain
explicit relations between the parameters of the two models.

The numerical solution to the system of equations (12) - (17) parallels that of the
one-phase model almost exactly, with longer computation times due to the increasei size nf
the collocation matrix and its bandwidth. Typical computation times to produce finid an?

snolid temperature profiles at each of five bed-depths were 3 - 4 seconds.

20~
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& discussina of the correlations available for prediction of the parameters require :

in the two-phate model is presented in (19); those chosen in this study were

1% (1, 0.6%
—_ = ~

PeRF dt Perf( ) (Re) (Pr)

1 _ %% ( V/Pe e () L 2e73¢
3 1.9 9.7¢/(R
PeAF . + /(RePr) (RePr)
. Tt LS B o 1
Blf = 012 Pe:f(w) - (Pr: (Fe)

58
i

1.501-ey)(ad /4 J2
N = t D
s (v /¥ ){1/Nu + 0.1k /v )
rs g fs g p

- 2a_ (krs N Pe
A M X {RePr)
t a
.255 . 0.665
Nu,_ = 22222 (pp 033 g, 00065
ts €

As the fluid was air, Pr = 0.72; the bed voidage ¢ was taken as N.4. Tre

k

Preliminary sensitivity tests showed that the parameter Nugs had verv little

the profiles; in the presence of reaction this parameter would be more irportant
P I

rS/kq and kp/ka were related using the formula of Zehner and Schlinder (37

e

(214

ratios

effect on

L.

It is clear that by adjusting the parameters of this model by nonlinear rearessinn, A

excellent fit to the experimental data could he obtained. The value of such a

nrogce fure

rather dubious, however, and it is more usgeful t» use the mndel to obtai= wualitative

information about the quantities Perf(w), Pnaf(W) and Pig, which are poorly

in the literature.

Jetor-ine?




a) Per‘(“)

This guantity is almost certainly a weak function of the tubhe-to-particle
liameter ratic (3./4), although the exact dependence is not wall-established.
Examination of rerorted literature data, especially the results of Xunii et al
(31) at extremely hiah Re, suggests taking Perf(w) = 8.0,

b) Peaf(w)

Recent worx of Hsiana and Haynes (32) shows the cormmonly=-taken value of
Peaf(w) = 2,0 to be questionable in the (dt/dp) range considered here. It was
decided to use the relationship Pe, . > Pe,, which results from the mcdel
matching of (19) when Re » 20~30. The values of Pe, were poorly determined
from measurements made at- bed exit alone (5), so estimates from data which
included profiles at z = 0 were used (4). These values led to great

improvements in the slopes of the predicted profiles.

¢c) Bi
S

Values of Bis may lie hetween the theoretical lower bound derived by Olbrich

(29):

R
BRi_ 2 (2.12)(—)
s 4

P

and Bis = ®, correspondiing to no thermal resistance between snlid and wall.

If eguation (20) is usel to predict Bi., tren it is necessarv to take Bi, = 1007

for a aood fit, as shown in fiqure 3 for a typizal case. However, it shnuld he noted that

equation (27) urderastimates the wralues of Bi (= mji) found ir (5). This is probably lue

to the unreliable correlatinn used for tu,e. As pointed out in (4). If the experimental
estimnates of Bi  are use? ingtead Af caquatinr {(20), then values o° Rj

s In the ranae 1" -

27 are needed. Some »f trese results are shown in figures T - 7.
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This result indicates that only precise determination of Bif will allow any
conclusions to be drawn on Bis, since these parameters may be mutually varied over fairle
large ranges and similar results obtained.

The computed temperature profiles in figures 4 - 7 show good general agreement with™
experiment; some deviation is apparent in the centre of the bed for Re = 73 and 224.
Agreement is improved if lower values of Perf(w) are used, but there is no justification
for this in the literature.

The semi-analytical solution given in (19) may also be compared to experimental
results using the same parameter results as for the numerical method. This is shown in
figure 8 for the case Re = 430. Similar results to the numerical method are obtained at
longer bed depths; at short bed depths the approximation is poor, due mainly to the

inadequacy of the one-point radial collocation method used.
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Conclusions

The orthoaonal collacation method usina riecewise cyhic Rermite pnlynmmialsg has heen
shown to give reasonably accurate solutions at low computing cost to the elliptic partial
differential equations resulting from the inclusion of axial conduction in models of heat
transfer in packed beds. The method nromises to be effective in solvina the nonlinear
equations arising when chemical reactions are considered, because it allows collocation
points to be concentrated where they are most effective.

The €luid-phase temperatures predicted from a two-phase pseudo-homogenecus model were
shown to aive reasonable aareement with experimental measurements, without explicitly
adjusting the model parameters. 1t was demonstrated that more refined experimental
measurements will he needed to determine the parameters of the model; in particular, the

solid and fluid phase wall Riot numbers were mutually adjustable.
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NOMENCLATURE

-1)

specific interfacial surface area {m
fluid specific heat  (kJ/ka®C)

pellet diameter (m)

tube diameter (m)

superficial mass flow rate (kg/mzs)

o
apparent interphase heat transfer coefficient (w/m2 c)

apparent wall heat transfer coefficient (w/mzoc)
wall=fluid heat transfer coefficient (w/mzoc)
wall-solid heat transfer coefficient (w/mzoc)
fluid=-solid heat transfer coefficient (w/mzoC)
axial effective conductivity (w/m°C)

radial effective conductivity (w/m°C

axial conductivity of fluid phase (w/m°C)
axial conductivity of solid phase {(w/m°C)
radial conductivity of fluid phase {w/m°C)
radial conductivity of solid phase {w/m°C)
molecular conductivity of fluid (w/m°C)
pellet conductivity (w/m°C)

length of packed test section (m)

tube radius (m)

radial coordinate (m)

bed temperature, one-phase model (°C)

fluid phase temperature (°C)

solid phase temperature (°C)

temperature of calming section wall (°C)
temperature of test section wall (°C)
superficial fluid velocity (m/s)

axial eo~ordinate {m)

Nimensionless parameters

Mo, DI U
N

v

2

ARG

apparent wall Rint number, hwR/kr
fluid-wall Rint number, hwfR/krf

snlid-wall Biot number, h,.R/k

TWS rs

suhinterval lenqgth

~number of axial suhintervals

-31=-
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n number of radial subintervals
N interphase heat transfer group, ath/krf .
Ng interphase heat transfer group, ath/krs
Nu, apparent wall Nusselt number, hwdp/kq
Nug fluid-solid Nusselt number, hfsdp/kg
Nu, e fluid-wall Nusselt number, hwfdp/kg
Pea effective axial Peclet number, chdp/ka
Pe, effective axial Peclet number (based on R), chR/ka
Pe, effective radial Peclet number, chdp/kr
, Pep effective radial Peclet number (based on R), GecpR/ky
é Pe. s axial fluid Peclet number, chdp/kaf
Pe,n axial fluid Peclet number (based on R), chR/kaf
Pe, . radial fluid Peclet number, chdp/krf
! Pepp radial fluid Peclet number (based on R), chR/krf
i Pe . () asymptotic value of Pe . as Re »
Q , ‘ Pe ¢ (®) asymptotic value of Pe,; as Re *> =
. Pr Prandtl number, ucp/kg
. Re Reynolds number, de/u
-‘ normalised radial co-ordinate (r/R)
‘ t transformed axial co-ordinate
! T¢ dimensionless fluid temperature (T¢=To)/(T,~Tg)
.E Tg dimensionless solid temperature (T}, =Tq)/(T,~Tq)
) x normalised axial co-ordinate (z/R)
Greek symbols
)
! a axial scaling factor
i € bed voidage
‘ ¢i cubic Hermite basis function
J wi cubic Hermite bhasis function
‘ ] dimensionless bed temperature, (T,-T,)/(T -Tg)
; W viscosity of fluid (kg/ms)
r p density of fluid (kg/m3)
L £ a general independent variable
D
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5)
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7)

8)
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10)

11)

12)

13)

14)

15)

16)

17)

18)

19)
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Appendix: computaticnal Jdetails

For collncatier at thre Zaussian roints within a subinterval, the vectors 254 ﬁii'
Cia terent only an -, an? are wuiven by
a = [1 P 1+ 1) hi ! 2 ( . 1) j!
Zin 77 33 Y AR PR T MRS 12
h
SSRRUUFS RSP O U AU PO S
-2 I T V3922 7 3% 5 o2
1 1 1 1
Iy = [ — —_, -
LI ' 273" h; 73
i i
PR 1 1 1 )
=i2 hl' 273° hi' 273

c =

_23 V3.1 23 1 -3

_1 ’ ’
i h? hi h2 hi
i i
. _ .23 /3 - 2/3 E+1}
C.ip = =5 — [ .
i2 e hi h? hi
i i

These vectors are supplied by a FORTRAN subroutine:

CALL BASWTS (ID, H, V) .
This subroutine computes the weights for u(ID)(xi1) and u(ID)(xiz); i.e« ID 1is an
indicator-variable set to 0,1 or 2 for the function or its' first or second derivative
respectively. The lenath of the subinterval containing x;49 and xj, is supplied to the

subroutine in H, and the weiahts are output in the 2 x 4 arrav V in the form e.q.

(EiT)

far 17 = 0, a=d eimjilarly for I = 1,2,
The nen ~f thegn methade ta digaretise houndary value prohlems results in a system of

alastrain eaaatinng
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where u is the vector of unknowns. The matrix A corresponds to the linear part of the

differential operator (and may be = 0). If the entire problem is linear then F(u)

reduces to a constant, b, and solution is straight-forward; otherwise iterative methods
must be used. Computational advantage may be taken of the fact that A is a band matrix
if the equations are ordered naturally, some thought may have to be given to the placement
of the boundary equations to obtain minimum bandwidth.

The band matrix A, of order N with M1 subdiagonal elements and total bandwidch

MT, 1is stored as an N x MT array. The matrix is factorised in the form A = LU, the
lower triangle being stored in array XM and the upper overwriting &, by the subroutine
BANDET; subroutine BANSOL is then called to solve the banded system LUu = b. The routines
are simplications of those given in (22), where further details on the storage method are

given.

Once the vector u has been obtained, the solution at arbitrary x is found usina

the formula

= a L3
u(x) ( i(x) u,)
where x; < x < Xj,q°

The vector a;(x) 1is given by the subroutine

CALL INTWIS(ID,X,XI,XJ,VECT) with 1ID =0

i

x 1s supplied in X, x. in XI and x

i 141 in XJ. Then on output VECT 1is the 4-

vector ai(x).

<

1f h’(x) is required, INTWTS is called with 1IDPD = 1; ID = 2 gives Ei(x).

~36~ .
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Note BASWTS is a special form of INTWTS where advantage is taken of the need to obtain
weights only at the Gaussian points of each subinterval.

It is easy to see that the elements in E—ij(y"‘)' ii,j*'l(y"‘)’ ii,”’j(y,x) and
gi+1’j+1(y,x) may be gererated from those in aj;(y) and gj(x). Hence ii.j(y"‘) may

also be generated from a;{y) and Ej(") and the product o is defined L;,
Aij(y,x) = ii(y) Oij(") .
Similar relations hold for g)i,j(y,x) etc., More generally a 16-element vector VC may be

generated from any two 4-element vectors VA and VB via the o-product, and a subroutine t»o

do this is: CALL OPROD (VA,VB,VC}.

Collocation within subrectangle 1ij requires Aijkl for k,x = 1,2 given Ay and
gji for k,L = 1,2, Subroutine PRDWTS calls OPROD four times to achieve this; a typical
2
] ;-
callina sequence is e.g. to obtain weights for —2 on subrectangle 1ij
3y

CALL BASWTS (2,HI,VI)
CALL BASWTS (0,HJ,VJ)

CALL PRDWTS (VI,VJ,VYY) .

Here VI and VJ are 2 x 4 matrices as described above and VYY is a 4 x 16 matrix
h bl
vy ‘
(gijﬂ)-

l
v
(€ij21)
|
Y

(iij12);

i
Yy
c )
(—-ij22 ‘




SURROUTINE RANDFT{ND,N,MTD,MT,M1D,¥1,A,XM,IP, IV, IFAIL) .
IMPLICIT NOURLE PRECISION (A=-H,D=0)
DIMENSION IP(ND},A(ND,MID),XM{ND,MID)

IFAIL = 0

L =M1 . '
y DO 30 I = 1,M1

IT =M1 + 2 -1

Po 25 1 = 1J,MT

25 A(I,J-L) = A(I,J) f

L=1L-+-1 :
' JL = MT = 1, i
: DO 30 3 = JL,MT
l 30 A(I,J) =0

L = M1
‘ D0 100 K = 1,X

¥ o= A(K,1)

I=K

IF (L.LT.N) L = L + 1
IF  (K+1.GT.L) GO TO 40
IK = K + 1
) e 35 J = IX,L
IF (DABS(A(J,1)).LE.DARS(X)) GO TO 35
! X = A(J,1)
‘ I=2J
' 35 CONTINUE
| 40 IP(K) = I
! IF (X.NE.0) GO TO 50

} IFAIL = 1
" IV = X
RETURN
i 50 IF (I.EQ.X) GO TC 70 .
DO 65 J = 1,MT ‘
: X = A(K,J)
v A(K,J) = A(L,J)
! 65 A(I,J) = X
i . 70 IF (K+1.6T.L) GO TO 100
IK = K+1
DO 90 I = IK,L
) XMK,I=K) = AMI,V)/n(K,1)
X = XM(¥,I-K)
DO 8N J = 2,MT
; A0 R(I,J-1) = A(I,3) - ¥*A(¥,J)
' en MI,MT) =0
160 CONTINUE
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SURROMTINE BAMEOL(NT,N,MTD,MT,M10,M1, A, XM, IF, R)
IMPLICIT DOI'RLE PRECLSION (A-H,0-7)
SIMENGIAN A(ND,NMTR), XMIND,MID),IP (N}, RN}
ne 40 X = 1,8

I = IP(X}

IF (I.EQ.X) 30 T2 10

X = B(X)

R(X) = R(I

B(I) = X

IF (LL.LT.N) £o= L + 1

IF (X+1.G7.1) 67 TO 40
IX = X+1

PO 20 T = IK,L

X = XM(K,I-K)

B(I) = B{I) ~ X*B(K)
CONTINUE

L =1

po 70 11 = 1,N

I = N+1-I1

X = B(I)

Iw = I-1

17 (L.EQ.1) GO TO 65

ne 60 K = 2,L

¥ = ¥=A(I,R)*P(IW+K)
B(1) = X/A(I,1)

IF (L.LT.¥T) L = L+1
CONTINUE

FETURN

END

SURPOUTINE BRASWTS(ID,H,V)
IMPLICIT DOUBLE PRECISION (A~H,0-7)
NIMENSION V(2,4)

S3 = DPSQRT(3.0D0)

IF (Ip=1) 1,2,3
v(1,1)=0.5+2,0/(3.0*S3)
v(1,3)=1,0-v(1,1)
V(1,2)=(1.0+1.0/S3)/12'H
V(1,4)=(1.0/83-1.0)/12*H
GC TO 4

v(1,1)==1.0/H
v(1,3)==V(1,1)
ve1,2)=n0.5/83
V(1,4)==V(1,2)

GO TO 4
Y(1,1)==2,0*a3/(H**2)
V(1,3)==v(1,1)
v{1,2)==(1.,0+S3)/H
vit,4y=11,n=63)/4
Jl=1)*N(ID+T)
vi2,2)=T%11,4)
TH2,4)=3%001,2)

vi2,3) ==J%11,1)

IR, )==I(1,3)
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SUBROUTINE INTWTS(ID,X,XI,XJ,VECT)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
H=XJ=XI .o
Z=(X~XI)/H |
Y=(X~XJ)/H i
IF (1D-1) 1,2,3
{ 1 VECT(3)=(3-247)*z**2 .
VECT(1)=1-VECT(3)

VECT (4)=H*Yy*2#*2

VECT(2)=H*Z%y¥#2

GO TO S
2 VECT(1)=6/H*(Z**2~2)

VECT (3 )=~VECT(1)

VECT(4)=2%#242%Z%Y

VECT (2)=2%2Z%Y+Y*%2

GO TO S
3 VECT(1)=6/H**2%(2*2~-1) J

VECT{3)=~VECT (1)
! VECT(2)={2*%2+4*Y) /H

VECT (4)=(4%2+2%Y) /H
5 RETURN

END

SURROUTINE PRDWTS(V1,V2,V)
IMPLICIT DOUBLE PRECISION (A~H,0~-Z)
) DIMENSION V1(2,4),v2(2,4),V(4,16),VA(4),VB(4),VV(16)
IPT=0
' Do 10 J=1,2
DO 10 I=1,2
IPT=IPT+1
DO 15 K=1,4
4 VA(K)=V1(I,K) .
15 VB(X)=v2(J,K)
CALL OPROD(VA,VB,VV)
DO 10 K=1,16 ,
10 V(IPT,K)=VV(K)
RETURN
END

} SUBROUTINE OPROD(VA,VB,V)
IMPLICIT DOUBLE PRECISON (A-H,0-2)
DIMENSION VA(4),VB(4),V(16) ]
JI=1
Do 10 J=1,2
4 Do 10 I=1,2
K=2%(I=1)+1
L=2#*(1-1)+1
V{JJ)=VA(K)*VR(L)
V{JI+1)=VA(K+1)*VB(L)
V(JI+2)=VA(K)*VR(L+1)
V{JI+3)=VA(K+1)*VB(L+1)
10 JI=JJ+4

END

;
}
f
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